Phosphorus is a chemical element; it has symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Earth. It has a concentration in the Earth's crust of about one gram per kilogram (compare copper at about 0.06 grams). In minerals, phosphorus generally occurs as phosphate.
Elemental phosphorus was first isolated as white phosphorus in 1669. In white phosphorus, phosphorus atoms are arranged in groups of 4, written as P4. White phosphorus emits a faint glow when exposed to oxygen—hence the name, taken from Greek mythology, Φωσφόρος meaning 'light-bearer' (Latin Lucifer), referring to the "Morning Star", the planet Venus. The term phosphorescence, meaning glow after illumination, derives from this property of phosphorus, although the word has since been used for a different physical process that produces a glow. The glow of phosphorus is caused by oxidation of the white (but not red) phosphorus—a process now called chemiluminescence. Phosphorus is classified as a pnictogen, together with nitrogen, arsenic, antimony, bismuth, and moscovium.
Phosphorus is an element essential to sustaining life largely through phosphates, compounds containing the phosphate ion, PO43−. Phosphates are a component of DNA, RNA, ATP, and phospholipids, complex compounds fundamental to cells. Elemental phosphorus was first isolated from human urine, and bone ash was an important early phosphate source. Phosphate mines contain fossils because phosphate is present in the fossilized deposits of animal remains and excreta. Low phosphate levels are an important limit to growth in a number of plant ecosystems. The vast majority of phosphorus compounds mined are consumed as fertilisers. Phosphate is needed to replace the phosphorus that plants remove from the soil, and its annual demand is rising nearly twice as fast as the growth of the human population. Other applications include organophosphorus compounds in detergents, pesticides, and nerve agents.